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 Abstract 
 Until  recently,  activity  in  the  motor  cortex  has  been  thought  to  represent  external  movement 
 parameters.  The  emerging  field  of  neural  population  dynamics  has  since  provided  a 
 comprehensive  framework  for  explaining  and  studying  the  temporal  evolution  of  neural  activity 
 in  the  motor  cortex,  especially  during  prepared  reaches  [1].  While  the  motor  cortex  is 
 responsible  for  generating  patterns  that  result  in  movement,  activity  in  visual  areas  is  primarily 
 driven  by  inputs,  so  substantial  efforts  have  been  made  to  understand  the  responses  of 
 individual  neurons  to  characteristics  of  stimuli.  Recent  work  has  shown  that  ensembles  with 
 recurrent  excitatory  connections,  rather  than  single  neurons,  are  the  functional  units  of  activity  in 
 the  visual  cortex  and  that  they  are  activated  in  response  to  stimuli  [2].  The  importance  of  neural 
 ensembles  has  also  been  supported  by  evidence  of  their  long-term  stability  in  the  mouse  visual 
 cortex  [3].  In  this  work,  we  incorporate  the  concepts  of  population  dynamics  and  neuronal 
 ensembles  to  investigate  the  population  responses  of  mouse  visual  areas  to  drifting  gratings 
 and  natural  movies.  We  find  low-dimensional  activity  in  the  mouse  visual  cortex  in  response  to 
 drifting  gratings  that  contains  information  about  stimulus  conditions  and  is  consistent  across 
 animals.  We  also  find  that  population  states  in  subsets  of  V1  are  predictive  of  the  spiking  activity 
 of  neurons  in  other  subsets.  For  natural  movies,  we  find  similar  predictive  relationships  between 
 areas  and  also  find  that  we  can  align  activity  in  visual  areas  across  animals,  suggesting  that  the 
 recorded  populations  share  a  common  structure  even  for  complex  stimuli.  These  results  provide 
 evidence  that  the  dynamics  of  overlapping  neuronal  ensembles,  rather  than  individual  neurons, 
 are the building blocks of visual processing. 

 Introduction 
 Modern neuroscience research is beginning to point heavily to the importance of studying 
 coordinated activity of large neural populations rather than investigating individual neuron firing 
 patterns in the control of behavior [4]. This new perspective is not only being applied in motor 
 control literature, however. For example, it has recently contributed greatly to the understanding 
 of the hierarchy of visual processing, such as in viewpoint invariance during object recognition 
 [5]. It can also offer insight into understanding early visual processing of simpler features like 
 contrast, edge detection, and scene movement. 

 At the core of many of these techniques is  dimensionality  reduction  , where the firing rates of 
 hundreds of neurons can be condensed to a smaller number of features, referred to as  latent 
 features  . This operation can be thought of as a transformation  from some high-dimensional 
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 space (spanned by the entire population) down to a lower-dimensional space, or  latent space  . 
 Depending on the methods used (e.g. factor analysis (FA), principal component analysis (PCA), 
 demixed PCA (dPCA), canonical correlation analysis (CCA), etc.), the latent features will reflect 
 a compressed form of the information embedded in the higher-dimensional activity. Each 
 method will extract a different aspect of the information in the population activity, so the method 
 should be chosen according to the information desired by the researcher. For example, PCA is 
 a common dimensionality reduction method for projecting neural population data onto axes 
 aligned to state space directions that capture the most variance in the dataset, which is usually 
 related to the amount of information along that dimension. However, a potential drawback is that 
 PCA treats all variance in the dataset the same, including noise or trial to trial variability that is 
 shared across the population. FA is ideal for dealing with these problems [6]. It extracts 
 underlying features in the neural population data while also modeling the contributions of noise 
 in each recording channel, which allows isolation of more representative latent factors. dPCA 
 can be used to extract task-specific low-dimensional factors, and CCA operates to find maximal 
 shared structure across separate observations of similar high-dimensional data. 

 Throughout this study, our primary aim was to investigate the nature of neural population 
 responses to different types of dynamic visual stimuli (various drifting gratings and natural 
 movies). We apply several of these recent dimensionality reduction techniques to investigate 
 how well we can extract specific aspects of the visual information from the higher dimensional 
 neural space across different visual cues and even different mice. Because of the complexity of 
 natural visual stimuli, our initial experiments focus on neural responses to several parametrized 
 simple visual stimuli: drifting gratings at different angles, movement speeds, and spatial 
 frequencies. After this line of analysis, we investigate the latent structures of the neural 
 responses to the more complex natural movies, both within and across different mice. 

 All of these goals can be ideally approached by applying the most well-suited dimensionality 
 reduction technique. For example, we use FA for many of our analyses in this study to explore 
 how well the latent factors in one brain area linearly correlate with the spiking activity in other 
 areas. In a separate analysis, we apply dPCA to extract meaningful components of the 
 high-dimensional neural activity that correspond with parameters of the external visual stimulus. 
 Our desire in using dPCA was to observe how well the information encoding different features of 
 the visual stimulus could be extracted, and how this information was distributed across brain 
 areas. Our final goal was to investigate the strength of shared structure in the latent spaces 
 across different mice exposed to the same natural movies. We used CCA to expose the optimal 
 shared latent structures at several different levels of dimensionality reduction (varying 
 dimensions of the latent space). Across our range of experiments and dimensionality reduction 
 approaches, the significance and explanatory power of these neural latent spaces for 
 understanding visual processing within the mouse visual cortex (V1) is evident. 

 2 



 Methods 

 Data Collection and Preprocessing 
 Data  was  collected  as  part  of  a  large-scale  initiative  by  the  Allen  Institute  for  Brain  Science  and 
 released  in  2019  as  part  of  the  Allen  Brain  Observatory  project  [7].  Here,  we  give  a  brief 
 overview  of  the  relevant  data  collection  protocols,  but  refer  the  reader  to  the  technical 
 whitepaper  for  more  details  [8].  Wild-type  and  transgenic  C57BL6/J  mice  were  surgically 
 implanted  with  multiple  Neuropixel  probes  in  visual  areas  identified  by  intrinsic  signal  imaging. 
 After  habituation,  the  animals  were  mounted  on  an  experimental  rig  and  passively  viewed  sets 
 of  stimuli,  including  2-second  exposures  to  drifting  gratings  for  all  combinations  of  8  orientations 
 and  5  temporal  frequencies  (drifting  gratings,  14-15  trials  /  condition  /  session)  and  two  short 
 clips  of  footage  from  the  opening  scene  of  the  movie  Touch  of  Evil  (natural  movies,  10  or  20 
 trials  /  condition  /  session).  Simultaneous  neural  activity  from  a  variety  of  visual  brain  areas  was 
 recorded via Neuropixel probes for the duration of the stimuli. 

 Table 1.  The total number of recorded units from each  major brain structure recorded in the dataset, along with 
 groupings of the areas into larger functional groups. 

 We  chose  12  brain  structures  with  largest  numbers  of  recorded  units  (see  Table  1,  excluding 
 subiculum  and  prosubiculum)  and  selected  five  sessions  recorded  from  different  animals  that 
 included  data  from  all  of  these  areas.  For  some  analyses,  we  grouped  neurons  from  the  12 
 structures  into  four  distinct  functional  areas,  also  shown  in  Table  1  -  visual  cortex,  hippocampus, 
 thalamus,  and  midbrain.  For  collaborative  efficiency,  we  stored  the  data  files  and  performed  all 
 analyses  using  a  shared  virtual  machine  in  Google  Cloud.  For  all  analyses,  we  binned 
 single-trial  spiking  activity  aligned  to  stimulus  presentation  at  1  ms  (including  margins  to 
 eliminate  edge  effects)  then  smoothed  the  data  by  convolving  with  a  60  ms  Gaussian  kernel. 
 Finally,  we  re-binned  the  data  to  10  ms  and  used  the  resulting  single-trial  rate  estimates  in  all 
 subsequent analyses. 
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 Extracting Condition-related Activity 
 To  extract  condition-independent  and  condition-dependent  components  of  the  neural  activity 
 during  the  drifting  grating  experiments,  we  first  computed  peristimulus  time  histograms  (PSTHs) 
 for  all  40  conditions  by  averaging  the  single-trial  rate  estimates  for  each  neuron.  We  extracted 
 only  neurons  from  the  visual  cortex  (100-200  neurons)  and  applied  demixed  principal 
 components  analysis  (dPCA)  to  extract  the  components  that  best  separated  the  activity  with 
 respect  to  time,  grating  angle,  and  temporal  frequency.  We  performed  this  analysis  across  all  5 
 sessions  and  achieved  similar  results,  but  we  only  show  one  session  here.  We  also  examined 
 the  weights  of  the  dPCA  loading  matrix  for  an  indication  of  which  areas  of  the  visual  cortex  were 
 important for distinguishing between conditions. 

 Latent State Alignment Across Sessions 
 To  align  latent  activity  across  sessions,  we  used  a  method  described  in  an  existing  paper  for 
 aligning  motor  cortical  dynamics  across  sessions  on  different  days  [9].  We  first  computed  visual 
 cortex  PSTHs  for  all  40  drifting  grating  conditions  for  each  session  as  described  above.  We  then 
 extracted  10-dimensional  unaligned  latent  dynamics  by  separately  applying  PCA  to  each 
 session.  Finally,  we  used  canonical  correlations  analysis  (CCA)  to  find  the  linear  projections  of 
 the  latent  dynamics  that  were  maximally  correlated,  which  we  call  aligned  dynamics.  We 
 computed  the  absolute  Pearson’s  r  for  unaligned  and  aligned  dynamics  and  averaged  across 
 dimensions  and  repeated  for  all  pairs  of  the  5  sessions.  We  also  performed  the  analysis  in  3D 
 on one pair of sessions for visualization purposes. 

 Spike Prediction 
 To  examine  the  relationships  between  population  activity  in  the  12  brain  structures,  we 
 separately  looked  at  neural  activity  during  one  drifting  grating  condition  (180°,  2  Hz)  and  one 
 natural  movie  condition  (30s).  We  extracted  10-dimensional  latent  states  from  the  single  trial 
 rate  estimates  for  each  structure  using  Factor  Analysis  (FA).  We  then  trained  Poisson 
 regressors  to  predict  the  Poisson-distributed  spiking  activity  of  all  observed  neurons  based  on 
 the  latent  state  of  a  given  structure.  We  evaluated  the  performances  of  these  models  using 
 pseudo-R  2  ,  taking  the  structure-to-structure  performance  as  the  median  pseudo-R  2  across  all 
 neurons  in  the  target  structure.  For  a  baseline  comparison,  the  approach  was  replicated  with 
 ridge  regression  in  place  of  the  Poisson  regressors.  This  is  a  linear  least  squares  method  that 
 applies  an  L2-regularization  penalty  to  the  data.  Instead  of  fitting  a  Poisson  distribution  on  the 
 latent  factors,  a  regularized  line  was  fitted  on  the  smoothed  PSTHs  to  predict  spiking  activity 
 across structures and neurons. 

 Population Alignment Across Sessions 
 To perform canonical correlation analysis (CCA) on the Allen Institute data, we trained and 
 tested CCA models using SciKit Learn’s CCA method [10]. CCA has been used to capture an 
 underlying pattern within two sets of data and align the data in a smaller latent dimensionality. 
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 We used CCA to determine how accurately two sets of neural responses from different mice 
 and/or to different stimuli could be aligned, or how strong of an underlying pattern exists within 
 the two sets. We used the coefficient of determination (R  2  ) to evaluate each alignment’s 
 accuracy. 

 Because of the promising results from aligning neural responses to drifting gratings using CCA, 
 we chose to continue to investigate common patterns within visual response data by moving to 
 a more complex stimulus: natural movies. We examined neural responses to the Allen Institute’s 
 two natural movies (labeled “natural movie one” and “natural movie three”), which are clips 
 taken from the movie “Touch of Evil.” Because the two natural movies were different lengths 
 (natural movie one was 30 seconds and natural movie three was 120 seconds), we only aligned 
 neural responses to the first 30 seconds of natural movie three. We ran a total of three 
 experiments: the first two aligned neural data across all 12 brain structures of interest, and the 
 third aligned neural data for only the primary visual area (VISp). In the first and third 
 experiments, we chose a lower latent dimensionality of 3, and in the second experiment we 
 chose a higher latent dimensionality of 20 to determine if the larger input data size from 
 examining across all areas affected the alignment accuracy. 

 For each of the three experiments where we examined neural responses across all brain areas 
 or on one brain area, we completed three sub-experiments. In the first sub-experiment we 
 aligned neural responses to natural movie one from five different sessions. In the second 
 sub-experiment we aligned neural responses to natural movie three from the five sessions. In 
 the third sub-experiment we attempted to align neural responses to natural movie one to 
 responses to natural movie three from the five sessions to serve as a lower R  2  reference, since 
 we expected the alignment to be significantly poorer when changing two variables. In 
 sub-experiments 1 and 2, we included cases where the response data was aligned with itself as 
 an upper R  2  reference since we expected the alignment  to be perfect (R  2  = 1.0). For each 
 sub-experiment, a total of 25 CCA models were trained and evaluated (one model for each 
 alignment pairing across the five sessions). 

 Results and Discussion 

 Drifting Gratings 

 V1 shows more interpretable population activity than other visual areas 
 Of  all  functional  areas  examined,  the  PSTHs  from  the  visual  cortex  display  the  most  structured 
 response  to  the  various  drifting  grating  conditions.  The  population  activity  starts  at  a  similar 
 region  in  state  space  for  all  conditions.  In  the  200  ms  after  the  stimulus  is  presented,  the  state 
 rapidly  jumps  in  a  similar  direction  for  all  conditions,  then  settles  into  a  stable  state  unique  to 
 each  condition  for  the  remainder  of  the  stimulus  presentation.  Some  interesting  findings  from 
 this  simple  analysis  are  the  similarities  in  representations  of  gratings  moving  in  opposite 
 directions  (e.g.  the  gratings  moving  left  and  right  have  very  similar  trajectories  and  stable 
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 points).  Additionally,  the  trajectories  for  up-down  gratings  are  much  more  distinct  from  the  other 
 pairs,  indicating  that  the  visual  cortex  represents  up-down  motion  much  differently  from  any 
 motion  with  a  horizontal  component.  It  makes  sense  that  a  mouse  would  represent  this 
 information  differently  from  an  evolutionary  standpoint,  and  this  is  consistent  with  the  findings  of 
 others [11]. 

 Figure 1.  Latent population activity extracted by  FA for all eight drifting grating orientations at a temporal frequency of 
 4 Hz. The legend in the middle shows the colors for various drift directions. 

 On  the  other  hand,  the  other  functional  areas  do  not  appear  to  show  much  consistent  structure 
 related  to  the  stimulus  condition.  This  is  likely  because  these  areas  have  functions  that  are  less 
 directly  related  to  the  observed  visual  stimulus  at  any  given  point  in  time,  with  the  thalamus 
 regulating  attention,  hippocampal  areas  managing  memory  formation,  and  the  midbrain 
 managing autonomic responses to ambient light. 

 V1 contains information about stimulus condition 
 When  we  examine  the  neural  data  for  variability  that  separates  the  various  condition  types  for 
 the  drifting  grating  stimulus  using  dPCA,  we  find  that  representations  are  cleanly  separated  for 
 all  40  conditions  across  all  sessions,  with  the  exception  of  overlapping  representations  for 
 opposite  grating  directions.  Also,  we  again  find  that  states  corresponding  to  the  up-down  stimuli 
 are very distinct from all other directions. 

 If  V1  were  strictly  representational,  one  might  expect  to  see  oscillatory  activity  that  corresponds 
 to  the  oscillating  visual  field.  However,  viewing  these  results  from  a  dynamical  systems 
 perspective,  V1  seems  to  demonstrate  attractor-like  dynamics  for  each  condition,  where  the 
 precise  location  of  the  attractor  in  state  space  is  mediated  by  the  contextual  input  of  a  visual 
 stimulus. 
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 Figure  2.  Results  of  applying  dPCA  to  separate  visual  cortex  PSTHs  from  40  behavioral  conditions.  (a) 
 Single-dimension  plots  of  the  first  two  components  of  time-varying  activity,  orientation  components,  and  temporal 
 frequency  components.  Numbers  indicate  percent  of  variance  explained  by  each  dimension.  (b,c)  Three-dimensional 
 visualizations, colored by stimulus orientation and by temporal frequency. 
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 When  we  performed  this  analysis  across  other  functional  areas,  we  saw  similar  time-varying 
 components  in  the  thalamus  and  midbrain  (7-8%  of  variance)  but  not  in  the  hippocampus, 
 virtually  no  separation  of  drift  angle  in  any  of  these  regions,  and  mild  separation  of  temporal 
 frequency  components  in  all  areas  (9-12%  of  variance).  This  is  consistent  with  our 
 understanding  of  the  response  of  the  thalamus  and  midbrain  to  a  change  in  stimulus,  and  the 
 potential  sensitivity  of  all  areas  to  higher  temporal  frequencies  which  may  trigger  a  fear 
 response. 

 Figure 3.  Distributions of dPCA weights for different  component types across V1 structures. 

 When  we  inspect  the  contribution  of  each  neuron  to  the  first  dimensions  of  dPCA  projections, 
 we  don’t  find  that  the  representations  are  dominated  by  any  brain  structure  in  particular  within 
 V1.  Rather,  the  weights  of  dPCA  seem  to  indicate  that  the  representations  that  distinguish  the 
 stimuli are distributed across the visual cortex. 
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 Consistent latent dynamics underlie V1 activity across animals 
 When  we  extracted  the  10D  latent  dynamics  of  the  visual  cortex  using  PCA  on  different 
 sessions,  we  were  able  to  linearly  align  them  using  CCA  and  achieve  high  correlation.  This 
 shows  that  the  structure  of  the  latent  dynamics  of  the  visual  cortex  during  drifting  grating  stimuli 
 is  similar  across  animals.  For  other  areas,  we  were  not  able  to  achieve  the  same  quality  of 
 alignment, showing that the activity of these functional areas is less consistent across animals. 

 Figure  4.  Aligning  latent  dynamics  of  PSTHs  for  8  grating  orientations  (temporal  frequency  4  Hz)  across  sessions.  (a) 
 The  top  3  PCs  plotted  in  3D  and  as  single-dimensions  through  time.  Match  between  PSTHs  is  computed  as  the 
 average  absolute  Pearson’s  r.  (b)  The  3D  latent  dynamics  after  alignment  via  PCA.  (c)  Alignment  quality  for  different 
 brain areas between all pairs of sessions. Error bars are standard deviations. 

 Population state in V1 areas is predictive of spikes in other V1 areas 
 As  expected,  the  latent  states  best  predicted  spikes  in  the  same  area,  but  we  had  a  few  other 
 fairly  consistent  findings.  First,  hippocampal  areas  CA1,  CA3,  and  DG  all  predicted  each  other 
 relatively  well.  Second,  all  of  the  visual  cortex  areas,  denoted  here  by  V1,  typically  predict  each 
 other  relatively  well.  Overall,  there  was  some  consistent  structure  despite  different  sessions  and 
 different  mice.  However,  there  was  quite  a  bit  of  variability  as  well,  which  we  attribute  to  different 
 distributions and numbers of recorded neurons and variability in attention during the movie. 
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 Figure  5.  Heatmap  of  median  pseudo-R  2  for  predicting  spikes  in  two  example  sessions  (capped  at  0.1  to  reveal  less 
 obvious  structure).  Source  areas  on  the  left  were  the  source  of  the  predictive  factors  and  target  areas  on  the  bottom 
 were the sources of predicted spikes. 

 Natural Movies 

 Population state is still predictive of spikes across areas 
 Despite the increased complexity of the stimulus, similar results as drifting gratings were found 
 when predicting spikes across brain areas within a session. We can see some interesting 
 results from the heatmap, even if regression is not a very effective tool in projection. We can see 
 that it is not necessarily symmetric, as projections from one area to another are not identical in 
 the reverse, which makes sense as each region has different neuron population sizes. One can 
 see that most regressions were able to map relatively well to APN and LGd. The regions in the 
 visual cortex were also able to project to each other better than other regions were. 

 Figure 6.  On the left is the R  2  between the actual spiking activity for each neuron in the DG area and the predicted 
 spikes from a ridge regression derived projection of the CA1 brain area. The average is then represented in the 
 heatmap on the right across the brain areas for a single session. 
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 This predictive power can also be seen with example PSTH predictions below. While some 
 general trends were predicted by the ridge regression, the Poisson regression applied to the 
 latent factors most accurately modeled the spiking behavior. The model performance shows that 
 the latent dimensions from simultaneous recordings of different brain areas have enough similar 
 information embedded in them to map spiking activity relatively well. This is the case even with 
 more dynamic stimuli such as the natural movies. 

 Figure  7.  PSTH  predictions  from  ridge  regression  on  smoothed  spikes  (left)  and  poisson  GLM  on  latent  factors 
 (right).  Both  capture  the  general  trend,  but  the  latent  factors  with  the  Poisson  distribution  more  effectively  model  the 
 spiking activity. 

 Population activity is alignable across sessions 
 In our first CCA experiment on the natural movie responses, we aligned data across all 12 brain 
 structures of interest for five sessions. Each session contained a total of approximately 500 
 neurons, and we reduced this dimensionality to 3 in the CCA models. For all three 
 sub-experiments, we found that the R  2  scores were  very high (>0.8), even for the alignment of 
 neural responses of different mice to different natural movies. For cases in sub-experiments 1 
 and 2 where we aligned the same neural response data to itself, the R  2  score was 1.0, as 
 anticipated. However, we expected the results of the third sub-experiment where we aligned 
 neural responses of different mice to different natural movies to have much lower R  2  scores. We 
 believe that the alignment accuracy was high for all three sub-experiments because we reduced 
 a very high-dimensional dataset to a latent dimensionality that was too low. Because of this, we 
 chose to re-run this experiment using a higher latent dimensionality of 20. 

 Our second CCA experiment tested whether the R  2  scores  of the CCA models from experiment 
 1 would drop significantly after increasing the latent dimensionality from 3 to 20. The latent 
 dimensionality increase was the only change from experiment 1. The R  2  scores for this 
 experiment were lower than those of experiment 1, with an average score of about 0.8. While 
 this change is small, the decrease in R  2  scores after  only increasing the latent dimensionality 
 suggests that the density of the input data (i.e. the number of neuron responses being 
 examined) may have an impact on the alignment results. To examine this further, we ran a final 
 CCA experiment that only examined the neural responses from the primary visual area (VISp). 

 In our final CCA experiment we aligned neural responses from VISp for five sessions. Each 
 session contained about 80 neurons, and we reduced this dimensionality to 3 in the CCA 
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 models. For all alignments that did not align the same data with itself, the R  2  scores were much 
 lower than those of experiments 1 and 2, with an average score of about 0.5. Alignments of the 
 same data still produced R  2  scores of 1.0, as expected.  The lower R  2  scores for this experiment 
 also suggest that the density of input data impacts the quality of alignment, since this input data 
 contained neural responses from about 80 neurons versus 500 in the previous experiments. 
 The third sub-experiment also produced much lower R  2  scores than those of the previous 
 experiments, with an average score of about 0.3, as we originally anticipated. The R  2  scores for 
 all three experiments are summarized in Figure 8. 

 Figure 8.  Heatmap of R  2  scores for aligning neural  responses of different mice to natural movies. In sub-experiment 
 3, neural responses to natural movie one (represented by the y-axis) are aligned with neural responses to natural 
 movie three (represented by the x-axis). 
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 Conclusion 

 Stimulus Parameter Encodings within Responses to Drifting Gratings in V1 
 Our first results with the drifting grating stimuli showed clearly different patterns of population 
 activity across the range of brain areas we analyzed. These results are reasonable due to the 
 wide range of functions and neural firing characteristics across these brain structures. The only 
 structure that showed a clear relationship to the orientation of the gratings was V1. This was 
 made evident by the similarity and close proximity between latent trajectories during up-down 
 grating conditions relative to all the other moving grating directions. Following this result, we 
 used dPCA to explicitly extract visual stimulus parameter latents from the population activity. 
 The results from this analysis showed clear separation across the different stimulus parameters, 
 and even resulted in several highly interpretable 3D plots showing the low dimensional features 
 that correlate most with each parameter of the visual stimuli. This information tended to be 
 distributed evenly across the entire visual cortex, providing evidence against a simple modular 
 representation of the parameters. 

 Once we had found evidence of the visual stimulus parameters being encoded in the latent 
 dynamics of V1, we found that the structure of these encodings is common across mice, and 
 could be highly correlated if properly aligned with CCA. As a final analysis, we explored the 
 concept that these latent structures might be predictive across brain areas during the same 
 stimuli. We found consistent evidence of predictability across brain areas in V1, which was 
 consistent with our finding that the condition-specific encodings were distributed across the 
 structure as a whole. 

 Alignment of Natural Movie Responses Suggests Common Dynamics 
 While our results in aligning neural responses to natural movies using CCA suggested that there 
 exist some consistent latent dynamics within natural movie responses, more work needs to be 
 done to conclude this. The method of using PCA to reduce dimensionality and then applying 
 CCA to the latent-dimensional data could be done to further this argument, as we did for neural 
 responses to drifting gratings. We would also need to examine the other 30 second increments 
 of natural movie three to better understand any shared dynamics between natural movies taken 
 from the same longer film. Reducing dimensionality and aligning neural responses to natural 
 movies not taken from the same film as natural movies one and three would also help to 
 establish whether there are common latent dynamics within natural movies of specific settings, 
 movements, etc. 

 In Summary 
 Our results exhibit the diverse range of dimensionality reduction techniques that can be applied 
 to uncover specific aspects of neural processing through analysis of the latent features. From 
 our analyses, we were able to discern how contributions from hundreds of individual neurons in 
 the mouse visual cortex can be coordinated in structured ways to process features from the 
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 external environment. These structures were so robust that we were even able to show 
 similarities in latent features across animals. Because these latent features evolve dynamically 
 as the stimulus is shown, we believe they reflect an underlying functional process, rather than 
 simple representation. 

 References 
 [1] M. Churchland  et al.  , “Neural population dynamics  during reaching,”  Physiol. Behav.  , vol. 

 176, no. 3, pp. 139–148, 2019. 

 [2] J. E. K. Miller, I. Ayzenshtat, L. Carrillo-Reid, and R. Yuste, “Visual stimuli recruit intrinsically 
 generated cortical ensembles,”  Proc. Natl. Acad.  Sci. U. S. A.  , vol. 111, no. 38, pp. 
 E4053–E4061, 2014. 

 [3] J. Pérez-Ortega, T. Alejandre-García, and R. Yuste, “Long-term stability of neuronal 
 ensembles in mouse visual cortex,”  bioRxiv  , p. 1,  2020. 

 [4] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy, “Computation through Neural 
 Population Dynamics,”  Annu. Rev. Neurosci.  , vol.  43, pp. 249–275, 2020. 

 [5] E. Froudarakis  et al.  , “Object manifold geometry  across the mouse cortical visual hierarchy,” 
 bioRxiv  , p. 2020.08.20.258798, 2020. 

 [6] G. Santhanam  et al.  , “Factor-analysis methods  for higher-performance neural prostheses,”  J. 
 Neurophysiol.  , vol. 102, no. 2, pp. 1315–1330, 2009. 

 [7] S. E. J. de Vries  et al.  , “A large-scale standardized  physiological survey reveals functional 
 organization of the mouse visual cortex,”  Nat. Neurosci.  ,  vol. 23, no. 1, pp. 138–151, 
 2020. 

 [8] “Allen Brain Observatory : Visual Coding Neuropixels Dataset,” vol. 0, no. October, 2019. 

 [9] J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Miller, “Long-term 
 stability of cortical population dynamics underlying consistent behavior,”  Nat. Neurosci.  , 
 vol. 23, no. 2, pp. 260–270, 2020. 

 [10] F. Pedregosa  et al.  , “Scikit-learn: Machine Learning  in Python,”  J. Mach. Learn. Res.  , vol. 
 12, no. 85, pp. 2825–2830, 2011. 

 [11] M. Tolkiehn and S. R. Schultz, “Temporo-nasally biased moving grating selectivity in mouse 
 primary visual cortex,”  bioRxiv  . bioRxiv, p. 708644,  19-Jul-2019. 

 14 


