
Algorithms for Solving the Minimum Vertex Cover Problem
Pratyusha Karnati

Georgia Institute of Technology
gkarnati3@gatech.edu

Prajwal Kumar
Georgia Institute of Technology

pkumar98@gatech.edu

Sahil Arora
Georgia Institute of Technology

sarora@gatech.edu

1 INTRODUCTION
The Minimum Vertex Cover (MVC) problem is a well known NP-
complete problemwith numerous applications in various industries.
MVC aims to find a subset of vertices for a given graph such that
all vertices in the subset cover all the edges of the graph. In this pa-
per, we will explore solving the MVC problem using four different
approaches and evaluate their theoretical and experimental com-
plexities. Our Branch and Bound algorithm was slow in its running
time but was fairly accurate in finding a minimum vertex cover for
the given graph. On the other hand, the approximation performed
very quickly but had the highest relative error. Our first local search
implementation of hill climbing did very well with fast runtimes
and outputted accurate MVCs close to the optimal solution. Lastly,
the second local search max independent set approach did slightly
worse than the hill-climbing approach. Our best approach was hill
climbing. Our worst approach was construction heuristic.

2 PROBLEM DEFINITION
Consider an undirected graph G = (V,E) denoting the set of edges
and vertices. Formally, a vertex cover V’ can be defined as a subset
of V such that for each (u, v) ∈ E, either u ∈ V’ or v ∈ V’. In this
case, V’ would cover all the edges of G. Our goal is to use different
algorithmic approaches to find the minimum vertex cover V’ that
satisfies the properties of a vertex cover as mentioned above. The
following graph in figure 1 shows an example of a minimum vertex
cover as represented by vertices a, c, f, g.

Figure 1: Minimum vertex cover of graph G = (V,E)

3 RELATEDWORK
In 1972, Karp proved that MVC is NP-complete [1]. Exact methods
to solve MVC mainly include branch-and-bound algorithms that
guarantee the optimality of the solutions they find, but may fail
to give a solution within reasonable time for large instances. An
exhaustive search algorithm can solve the problem in time 2𝑘𝑛𝑂 (1) ,
where 𝑘 is the size of the vertex cover. Vertex cover is therefore
fixed-parameter tractable, and can be solved in polynomial time
for small 𝑘 . Downey and Fellows used kernelization on the fixed

parameter problem to reduce the runtime to 𝑂 (𝑘𝑛 + 2𝑘𝑘2) [2]. Par-
allelization has also been employed to make finding exact solutions
more feasible. Researchers like Dehne et al. reported that they used
fixed parameter tractable algorithm to solve the minimum vertex
cover problem on coarse grained parallel machines successfully [3].

Due to the inherent computational intractability of the MVC
problem, however, many researchers have instead focused their
attention on the design of approximation algorithm for delivering
quality solutions in a reasonable time. Garey and Johnson presented
a simple approximation algorithm based on maximal matching
that gave an approximation ratio of 2 for the general graphs [4].
Improvements have been made on different types of graphs that
have better approximation ratios, but a hard limit was found. In 2005,
it was proven that it is still NP-hard to approximate MVC within
a factor smaller than 1.3606 [5]. Many unique approaches have
been explored, such as the use of Hopfield neural networks to find
efficient covers [6]. Simulated annealing [7] and genetic algorithms
such as Ant Colony Optimization have also had promising results
[8]. However, this report will focus on exact solutions via branch-
and-bround, and approximate approaches with local search and a
construction heuristic.

4 ALGORITHMS
The following describe our four algorithmic approaches: branch and
bound, construction heuristic, hill climbing, and max independent
set. Each section highlights the algorithm’s description, pseudocode,
time and space complexity analysis, and an analysis on its strengths
and weaknesses.

4.1 Branch and Bound
4.1.1 Description. The branch and bound algorithm is derived
from the backtracking strategy for decision problems. This algo-
rithm searches through the complete space of solutions for the
given problem for the best solution and eliminates the unpromising
alternatives from consideration that don’t meet the bounds of the
optimal solution. However, as the size of the graph increases ex-
ponentially, it becomes nearly impossible for explicit enumeration.
Therefore, the algorithm further refines the backtracking idea by
optimizing. By keeping track of the best solution found, it computes
a new lower bound to constrain the search space. When a solution
for the sub-problem is found that is worse than the lower bound,
we consider it an unpromising solution and continue to prune it
and all its child nodes. If a solution is found that is better than
the current vertex cover, it will replace the current best solution.
The algorithm will terminate once there are no more branches to
explore or once the running time exceeds the cutoff time threshold.

4.1.2 Pseudocode. See Algorithm 1.
In our implementation, the upper bound is the best solution

minimum vertex cover and starts off as the |V|, the number of nodes
1

Pratyusha Karnati, Prajwal Kumar, and Sahil Arora

in G. On the other hand, the lower bound is defined as Lower-
Bound(subproblem) = |VC’| + 𝐺′.𝑒𝑑𝑔𝑒𝑠

𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑑𝑒𝑔𝑟𝑒𝑒𝑖𝑛𝐺′ , where VC’ is the
partial vertex cover of the explored section and G’ is the unexplored
graph. This algorithm considers vertices in decreasing order of ver-
tex degree to find the optimum solution. This is because we can
assume the vertices with the highest degree are guaranteed to allow
a less number of vertices used to cover all the edges of the graph
and solve the minimum vertex cover problem.

For clarification on notation used in our psuedocode, our frontier
set, F, contains tuples representing subproblems of the form (vertex,
state, (parentvertex, parentstate)). Additionally, the vertex cover
solution, VC, contains tuples of the form (vertex, state) where the
term state is defined by if the vertex is in the VC solution (denoted
by a 1) or not (denoted by a 0).

4.1.3 Time and Space Complexity. The worst case for branch and
bound would be that every possible solution is explored. In this case,
the time complexity is O(2 |𝑉 |), which represents the total number
of possible scenarios and the number of iterations of the while loop
since each iteration takes O(V+E) time to explore a subproblem of
the search space.

The frontier set contains all candidate vertices that need to be
explored. Therefore, the space complexity would be O(V+E) because
of the 2V space needed for storing the vertices in the frontier set
and E space for finding the minimum vertex cover solution.

4.1.4 Strengths and Weaknesses. Branch and Bound ensures that
we get an exact solution since it can be exhaustive and try every
possible solution. However, a caveat is its terrible time complexity.

4.2 Construction Heuristic
4.2.1 Description. Instead of choosing any remaining vertex when
building the vertex cover, we assume that the best improvement
comes from adding the vertex that has the most edges connected
to it. Our heuristic therefore entails greedily adding vertices to the
cover that have the highest degree. The graph is updated so that a
vertex selected for the cover has its corresponding edges removed
as well. The algorithm terminates when there are no uncovered
edges left so it always produces a vertex cover, although it may be
suboptimal.

To determine the approximation factor, we consider the worst
case for the greedy heuristic, which would be a bipartite graph
consisting of 𝐿∪𝑅, where 𝐿 is a set of 𝑛 vertices and 𝑅 is a collection
of sets 𝑅1, 𝑅2, . . . of vertices, where set 𝑅𝑖 has 𝑛/𝑖 nodes in it. So,
overall there are Θ(𝑛 log𝑛) nodes. We now connect each set 𝑅𝑖
to 𝐿 so that each vertex in 𝑅𝑖 has 𝑖 neighbors in 𝐿 while no two
vertices in 𝑅𝑖 share any neighbors in common. Now, the optimal
vertex cover is just the 𝑛 vertices in 𝐿, but the greedy algorithm
can first choose 𝑅𝑛 then 𝑅𝑛1, finding a cover of total size 𝑛 log𝑛 −𝑛.
So the approximation factor is Θ(𝑛 log𝑛

𝑛) giving an approximation
guarantee of Θ(log𝑉) where 𝑉 is the number of vertices.

4.2.2 Pseudocode. Algorithm 2 outlines how the vertex of max-
imum degree is added to the cover. The graph is also updated as
vertices in the cover are no longer considered, which entails de-
creasing the degree of all the neighbors that share an edge with the
selected vertex.

Algorithm 1: Branch and Bound
input :graph G = (V,E), cutoff
output :best MVC cost and solution, solution times

F = [(v, 0, (-1, -1)), (v, 1, (-1, -1))];
VC <– Ø ;
upperBound <– |V|;
gCopy <– copy of graph G;
v <– vertex with highest degree;
while F != Ø and time < cutoff do

(vx, state, parent) = F.pop();
backtrack = false;
if state == 0 then

for all neighbors of vs, set state = 1 ;
VC <– neighbors of vx;
remove neighbors from gCopy;

else if state == 1 then
remove vx from gCopy

if G.edges == Ø // solution found then
if |VC| < upperBound then

optimal <– VC;
upperBound <– |VC|;

backtrack = true //explore next subproblem
else

if LowerBound(G) + |VC| < upperBound then
vy <– current vertex with highest degree;
F <– [(vy, 0, (vx, state)), (vy, 1, (vx, state))]

else
backtrack = true; //explore next subproblem

if backtrack = true and F != Ø then
nextParent = last element in F;
if nextParent in VC then

idx = idx of nextParent in VC;
while idx < |VC| do

node, state = VC.pop();
add node and edges back to gCopy

else
reset VC <– empty;
reset gCopy <– G

return optimal, solutionTime

Algorithm 2: Greedy Approximation
input :graph G = (V,E), cutoff
output :best MVC cost and solution, solution times

C <– Ø ;
while E ≠ do

Pick highest degree vertex 𝑣 in the current graph;
C <– C + v;
E <– E - {e ∈ 𝐸 : 𝑣 ∈ 𝑒}

return optimal, solutionTime

2

Algorithms for Solving the Minimum Vertex Cover Problem

4.2.3 Time and Space Complexity. This algorithm takes at most
𝑂 (𝑉𝐸) time for each iteration to find the maximum degree vertex,
remove it, and recalculate the degrees of the graph. There are at
most 𝑉 iterations, so the runtime complexity in the worst case is
𝑂 (𝑉 2𝐸). The space complexity is at worst 𝑂 (𝑉) to keep track of
the degrees of the vertices and to store the set of vertices that are
the chosen cover.

4.2.4 Strengths and Weaknesses. This algorithm is guaranteed to
output a complete vertex cover and is relatively fast. However, the
greedy approach is naive and does not always find the minimum
covering on even smaller instances. This is further reinforced by the
fact that the heuristic does not have tight guarantees in optimality
with an approximation ratio of 𝑂 (log𝑉).

4.3 Local Search - Hill Climbing
4.3.1 Description. The local search algorithm attempts to initialize
a naive vertex cover solution and optimize it over time. With this
framework, the algorithm solves the decision version of the problem
which is "Given an integer k, is there a vertex cover of size at
most k". This is done by iteratively looking at edges that have
not been covered and exchanging vertices based on lower cost.
While the vertices are evaluated based on overall edge cost, we
incorporate random restarts with a random seed. This allows us to
more thoroughly cover possibilities across the search space. The
specific selection scheme, or way we choose the vertex to remove
and add, can be defined by various heuristics. One recent paper
developed a novel way to speed up the search by developing an
algorithm called FastVC [9].

4.3.2 Pseudocode. The pseudocode for this algorithm can be seen
in algorithm 3. The entire algorithm optimizes values using a loss
and gain value as reference. Loss for a vertex v is defined as the num-
ber of covered edges that would become uncovered by removing
vertex v. Gain for a vertex v is defined as the number of uncov-
ered edges that become covered by adding vertex v. The overall
algorithm is broken up into 2 parts, the initialization of the Vertex
Cover and then the search optimization. We start by initializing a
Vertex Cover using the ConstructVC algorithm (algorithm 4) which
works by starting at a vertex s, exploring edges neighboring it and
adding vertices with the higher degree to the cover. After going
through all nodes, we then check our cover for vertices with loss=0
and remove those nodes as it would not affect the cover and reduce
the quality. This is also our upper bound for the algorithm. The opti-
mization works by using the Best from Multiple Selection Heuristic
to select which vertex to remove. This heuristic works by "Choose
k elements randomly with replacement from your cover and return
the best one (with respect to some function)". The vertex to add is
chosen by randomly selecting an uncovered edge and adding the
vertex from it with higher gain.

4.3.3 Time and Space Complexity. The time complexity of this
algorithm can be analyzed in 2 parts. The ConstructVC part runs
within O(m) where m is the number of edges. The reason for this
is that we iterate through all of m to generate a cover and then
iterate through the cover (some subset of m) to remove unnecessary
vertices. Thus at worst case this is O(2m)=O(m). The optimization
part runs within O(k)=O(1) because choosing a vertex to remove

Algorithm 3: FastVC
input :graph G = (V,E), cutoff, random seed
output :best MVC cost and solution, solution times

VC <– ConstructVC(G) ;
gain(v) <– 0 for all v ∉ VC ;
random variable <– random seed;
while time < cutoff do

if VC covers all edges then
optimal <– VC;
v <– vertex with minimum loss in VC;
VC <– VC - v;
continue;

u <– random element from VC;
for iteration 1 to k do

u’ <– random element from VC;
if loss of u’ < loss of u then

u <– u’;
VC <– VC - u;
if uncovered edges > 0 then

e <– random edge;
v <– endpoint of e with larger gain;
VC <– VC + v;

return optimal, solutionTime

Algorithm 4: ConstructVC
input :graph G = (V,E)
output :Vertex Cover of G

C <– Ø ;
foreach edge ∈ E do

if edge is uncovered then
C <– C + v where v is endpoint of edge with
higher degree;

loss(v) <– 0 for all v ∈ C ;
foreach edge ∈ E do

if only one vertex of edge is in C then
loss(v) += 1;

foreach vertex ∈ C do
if loss(v) = 0 then

C <– C - v;
update losses of C;

return C

requires selecting k vertices where k is constant. Similarly choosing
a vertex to add is randomized and requires only selecting 1 edge.
Thus the overall time complexity for this algorithm is O(m). The
space complexity for this algorithm is about O(VE) as it requires
information on the loss and gain values for every vertex, this can
be optimized via various packages in python.

4.3.4 Strengths and Weaknesses. This strengths of this algorithm
are that it optimizes very quickly. The weaknesses are that is heavily

3

Pratyusha Karnati, Prajwal Kumar, and Sahil Arora

dependent on the random seed and it utilizes a lot of space for
maintaining graph data.

4.4 Local Search - Max Independent Set
4.4.1 Description. Another local search solution find the minimum
vertex cover by solving its dual problem, the maximum independent
set. An independent set of a graph G = (V;E) is a subset of V, M,
whose elements are pairwise non-adjacent. Notice that finding
the Minimum Vertex Cover C of a graph is equivalent to finding
the Maximum Independent set M because VC = V - M. Using this
theory, we can generate a maximum independent set of the vertices
using a randomized search across the graph. Every time we find a
larger independent set, we would have a more optimal vertex cover
because it would be complementary to the number of vertices.

4.4.2 Pseudocode. The pseudocode for this algorithm can be found
in algorithm 5. The maximum independent set problem can be
optimized by local search using the 2-improvement method. This
method works by taking a vertex of a maximal independent set
and replacing it with two of its neighbors that are not adjacent to
each other. This way, the total number of vertices in the solution is
increased by one. Our pseudocode starts by maintaining 3 values for
every vertex, whether it is covered, uncovered, and what the gain is.
At the start of our loop, we check if we have a larger independent
set and update our graph with that information. The using the
largest independent set in our memory, we select a node at random
to reconsider. This randomness works by selecting 5 random nodes
and selecting the node with the smallest gain. We then update our
set by removing the node and adding all of its neighbors that are
valid and then recalculate the covered, and uncovered nodes as
well as value. Finally, we make sure we have no open vertices left
by iterating through the remaining open vertices and putting all
neighbors into our independent set that make it valid. Our final
vertex cover is the set of vertices in the graph that don’t exist in
the largest independent set we generated.

4.4.3 Time and Space Complexity. The time complexity of this
algorithm is worst case O(𝑉 2) because when generating the max
independent set, we process the list of open vertices and check all
their neighbors for whether they are covered or not. In the worst
case, our list of open vertices is of size V and the neighbors are fully
connected of size V as well. The update step runs within O(V) by
comparison because we select a random vertex, O(1) operation, and
then check all neighbors for whether we should swap it. The space
complexity of this is the same as the other local search algorithm
which is O(VE) because we must maintain a full version of the
graph with covered, uncovered, and gain values for reference when
generating max independent set.

4.4.4 Strengths and Weaknesses. The strengths of this algorithm
are that it utilizes the random restart to its full capacity, allowing it
to check most possible swaps. This results in it having good chance
for finding an optimal solution given enough time. The downside
is the runtime and how long it takes to generate a vertex cover.

Algorithm 5:MaxIndSetConversion
input :graph G = (V,E), cutoff, random seed
output :best MVC cost and solution, solution times

VC <– ConstructVC(G) ;
random variable <– random seed;
uncov <– V - VC ;
close(v) <– 1 for all v ∈ uncovered else 0;
open(v) <– 1 for all v ∈ VC if neighbor is uncovered else 0;
val(v) += 1 for all v ∈ VC if neighbor is uncovered else 0;
currIndSet <– v for all v ∈ V if cov(v) is 1 ;
MaxIndSet <– Ø ;
while time < cutoff do

if number of node in uncov > MaxIndSet then
optimal <– V - uncov;
MaxIndSet <– uncov;
updated graph <– Graph;
new open <– currIndSet;

else
uncov <– MaxIndSet;
Graph <– updated graph;
currIndSet <– new open;

open vertices = V - uncov;
u <– random element from uncov;
for iteration 1 to k do

u’ <– random element from uncov;
if val(u’) < val(u) then

u <– u’;
V <– neighbors of u;
foreach v ∈ V do

val(v) += 1;
if close(v) then

W <– neighbors of v;
foreach w ∈ W do

val(w) -= 1;
remove v from uncov;

foreach v ∈ V do
W <– neighbors of v;
foreach w ∈ W do

if close(w) and val(v) = 0 and w ∉ currIndSet
then

add w to currIndSet;

add u to uncov;
while currIndSet has nodes do

u <– randomly selected node from currIndSet;
V <– neighbors of u;
foreach v ∈ V do

val(v) += 1;
if open(v) and not close(v) then

open(v) = 0;
remove v from currIndSet;

close(u) = 1;
val(u) = 0;
remove u from currIndSet;
add u to uncov;

optimal <– V - MaxIndSet;
return optimal, solution time;

4

Algorithms for Solving the Minimum Vertex Cover Problem

5 EMPIRICAL EVALUATION
5.1 Branch and Bound
5.1.1 Platform. Branch and bound was tested on all graphs on a
device with the following configuration:

• Processor: 2.9 GHz Intel Core i5
• Memory: 8 GB 2133 MHz LPDDR3
• Language: Python
• System: Mac OS

5.1.2 Procedure and Criteria. We ran the branch and bound al-
gorithm for each dataset with a cutoff time of 10 minutes or 600
seconds. The resulting performance was evaluated based on the
time to find the optimal solution, the best minimum vertex solution,
and the percentage relative error found within the cutoff.

5.1.3 Results. See Table 1 for a comprehensive evaluation of the
branch and bound algorithm.

Table 1: Branch and Bound Results

Dataset Time(s) VC Value RelErr(%)

jazz 0.256 158 0
karate 0.0039 14 0
football 303.87 94 0

as-22july06 345.089 3307 0.12
hep-th 100.78 3944 0.46
star 230.86 7374 6.8
star2 256.56 4697 3.4

netscience 5.029 899 0
email 1.93 605 1.9

delaunay_n10 262.11 736 4.7
power 36.24 2277 3.4

Since the branch and bound algorithm can explore up to the
entire search space, the algorithm is known to take a long time to
complete its search for the optimal solution. However, since our
implementation of BnB considers vertices in decreasing order of
vertex degree to find the optimum solution, the initial solution was
found rather quickly. This lower bound was a good starting off
point and was pretty close to optimal solution. As seen in Table
1, the algorithm finds an optimal solution for four of the eleven
graphs. Additionally, the maximum percentage relative error found
was for the star graph which had a relative error of 6.8%, but this
is still reasonable considering we constrained the running time to
600 seconds.

5.2 Construction Heuristic
5.2.1 Platform. Construction heuristic was tested on all graphs on
a device with the following configuration:

• Processor: 2.9 GHz Intel Core i5
• Memory: 8 GB 2133 MHz LPDDR3
• Language: Python
• System: Mac OS

5.2.2 Procedure and Criteria. We ran the constructive heuristic
for each dataset with a cutoff time of 10 minutes or 600 seconds.
The resulting performance was evaluated based on the time to find
the optimal solution, the best minimum vertex solution, and the
percentage relative error found within the cutoff

5.2.3 Results. See Table 2 for a comprehensive evaluation of the
heuristic algorithm. Regardless of size, this approximation algo-
rithm outputs a covering within the cutoff at a relatively quick time.
However, the tradeoff with efficiency lies in the optimality of the
solutions. In only a couple of cases does the greedy degree approach
reach an optimal solution. Even with smaller graphs, suboptimal
covers were found, although depending on the tolerance they may
be acceptable coverings.

Table 2: Construction Heuristic Results

Dataset Time(s) VC Value RelErr(%)

jazz 0.0029 160 1.26
karate 0.00011 14 0
football 0.00083 96 2.13

as-22july06 4.35 3312 0.27
hep-th 1.92 3947 0.53
star 4.50 7366 6.72
star2 3.63 4677 2.97

netscience 0.088 899 0
email 0.038 605 1.85

delaunay_n10 0.041 740 5.26
power 0.64 2272 3.13

5.3 Local Search
5.3.1 Platform. All local search algorithms ran and generated
graphs on the following platform:

• Processor: 2.8 GHz Intel Core i7
• Memory: 8 GB 2801 MHz
• Language: Python
• System: Windows OS

5.3.2 Procedure and Criteria. We ran both local search algorithms
for each dataset with a cutoff time of 10 minutes or 600 seconds. We
ran both algorithms on each graph 10 times using random seeds
1-10. The resulting performance was evaluated based on the time
to find the optimal solution, the best minimum vertex solution, and
the percentage relative error found within the cutoff. We have also
specifically provided QRTD, SQD, and box plots for the Power and
Star2 graphs in the Appendix section below.

5.3.3 Results for Local Search - Hill Climbing. While local search
algorithms are not guaranteed to search all possibilities, the hill
climbing approach seems to work very well for these datasets.
The relative errors are fairly low even for the larger graphs and
the runtimes are manageable in comparison to Branch and Bound
regardless of the random seeding. The only exception to this is the
star2 graph which seems to have both high runtime and a relative
error. The QRTD plots for this indicate that there is a exponential
increase in optimal solutions the longer we run the algorithm for

5

Pratyusha Karnati, Prajwal Kumar, and Sahil Arora

Table 3: Hill Climbing Results (Average over 10 runs)

Dataset Time(s) VC Value RelErr(%)

jazz 0.57 158 0
karate 0.00 14 0
football 0.08 94 0

as-22july06 43.83 3303 0
hep-th 69.20 3926 0
star 274.27 6942 0.0057
star2 597.50 4607 0.0143

netscience 0.00 899 0
email 13.67 594 0

delaunay_n10 120.43 703 0.0099
power 40.763 2203 0

and this may be a result of the optimization process. The use of
random restarts for picking vertices in our cover is extremely useful
as well as it prevents a majority of these graphs to avoid getting
stuck in a local minimum. The QRTD plot for the power graph
has the opposite trend where it seems to find a very close optimal
solution early on, but has trouble optimizing after a threshold of
about 0.8%. The SQD plots show a distinct increase in relative
solution quality overtime for the Power graph. For the Star2 graph
specifically, we see that the algorithm has about the same solution
quality beyond the 6 min mark (360 seconds) and requires a lot
more time to search for a better solution. Finally, we see a large gap
in runtime as the Power graph optimizes within half a minute and
the Star2 graph requires the full amount of time.

Table 4: Max Independent Set Results

Dataset Time(s) VC Value RelErr(%)

jazz 2.8 158 0
karate 0 14 0
football 0.42 94 0

as-22july06 532.23 3310 0.0021
hep-th 506.21 3929 0.0008
star 573.14 7023 0.0175
star2 592.86 4822 0.0616

netscience 0 899 0
email 150.333 632 0.0639

delaunay_n10 432.18 703 0
power 551.85 2209 0.0027

5.3.4 Results for Local Search - Max Independent Set. The maxi-
mum independent set conversion looks to be a more convoluted
way to solve the problem with overall greater relative error on the
graphs and longer runtimes as can be seen by the table and the
box plots. Computationally, this method is more time consuming
and resource extensive. This can also be seen by the QRTD graphs
where the number of valid solutions drastically increases in amount
of time required to compute (ie. q* = 1.1% to 0.5% for the power
graph). There also tends to be less of a exponential growth in so-
lution quality towards the beginning and is more linear. The SQD

graphs also indicate a larger disparity in optimal solutions in com-
parison to runtimes. Overall this shows that the max independent
set conversion relies more heavily on randomness and brute force
than first local search method.

6 DISCUSSION
From our results, we see a clear distinction in output values and
runtimes. The local search hill climbing method was the best out
of the 4 methods, with the lowest average runtimes and lowest
relative errors for all graphs. The local search maximum indepen-
dent set conversion method has low relative errors as well, but had
significantly larger runtimes. In this regard, the branch and bound
algorithm did better than the maximum independent set method.
Finally, the construction heuristic method did the worst with the
highest relative error, but with the fastest runtimes out of the 4
methods. This output is expected as they match the expected time
complexities of the algorithm. The only anomaly was the runtime
comparison of maximum independent set vs. branch and bound as
bnb manually checks the entire search space. This might be attrib-
uted to the difference in platform and system as well as estimation
of the graph. The local search hill climbing method had the most
optimal time complexity next to the construction heuristic, but
incorporated Best from Multiple Selection heuristic to search the
graph. Additionally, even with an exponential time complexity, the
branch and bound algorithm still found promising solutions, some
of which were were better than the construction heuristic search.

7 CONCLUSION
In conclusion, we see that the local search and branch and bound
methods provide the best optimization for the minimum vertex
cover problem. In contrast, the construction heuristic method pro-
vides a fast estimate in return for low accuracy. The usage of heuris-
tics within local search proved to be more effective as it was able to
avoid getting stuck in local minimum and utilize randomness to ex-
plore the search space more thoroughly. Meanwhile, the branch and
bound method manually checked all possible solutions within the
given time frame and so had the largest runtime of the 3 methods.

REFERENCES
[1] Karp, R.M. Reducibility Among Combinatorial Problems. Complexity of Com-

puter Computation, Plenum Press, New York (1972) 85–103.
[2] Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness II:

Completeness for W [1]. Theoretical Computer Science, Vol. 141 (1995) 109–131.
[3] F. Dehne et. al, Solving large FPT problems on coarse grained parallel machines,

Available: http://www.scs.carleton.ca/fpt/papers/index.htm
[4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the theory

NP - completeness, San Francisco: Freeman (1979).
[5] Dinur, Irit; Safra, Samuel (2005). "On the hardness of approximating minimum

vertex cover". Annals of Mathematics. 162 (1): 439–485.
[6] C. Z. Tang, X. Xu et al., An algorithm based on Hopfield network learning for

minimum vertex cover problem, Lecture Notes in computer science, Vol. 3173,
(2004), 430 - 435,.

[7] X. Xu and J. Ma, An efficient simulated annealing algorithm for the minimum
vertex cover problem, Neurocomputing, Vol. 69, Issues 7-9, (2006), 613 - 616.

[8] S.J. Shyu, P.Y. Yin and B.M.T. Lin, An ant colony optimization algorithm for the
minimum weight vertex cover problem, Annals of Operations Research, Vol. 131,
(2004), 283 - 304.

[9] Cai, Shaowei. “Balance between Complexity and Quality: Local Search for Mini-
mum Vertex Cover in Massive Graphs.” IJCAI (2015).

6

Algorithms for Solving the Minimum Vertex Cover Problem

8 APPENDIX

Figure 2: LS1: Power Graph Results 1) QRTD Plot for q* val-
ues = [0.2%, 0.4%, 0.6%, 0.8%] 2) SQD Plot for t values in sec-
onds = [0.5, 5, 10, 20] 3) Box plot for Runtimes in seconds of
Power graph

Figure 3: LS1: Star2GraphResults 1) QRTDPlot for q* values
= [1.85%, 2%, 2.15%, 2.3%] 2) SQD Plot for t values in seconds
= [30, 180, 360, 540] 3) Box plot for Runtimes in seconds of
Star2 graph

7

Pratyusha Karnati, Prajwal Kumar, and Sahil Arora

Figure 4: LS2: Power Graph Results 1) QRTD Plot for q* val-
ues = [0.5%, 0.7%, 0.9%, 1.1%] 2) SQD Plot for t values in sec-
onds = [30, 60, 180, 360] 3) Box plot for Runtimes in seconds
of Power graph

Figure 5: LS2: Star2GraphResults 1) QRTDPlot for q* values
= [6.5%, 6.7%, 6.8%, 6.9%] 2) SQD Plot for t values in seconds
= [0.5, 5, 10, 20] 3) Box plot for Runtimes in seconds of Star2
graph

8

	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Algorithms
	4.1 Branch and Bound
	4.2 Construction Heuristic
	4.3 Local Search - Hill Climbing
	4.4 Local Search - Max Independent Set

	5 Empirical Evaluation
	5.1 Branch and Bound
	5.2 Construction Heuristic
	5.3 Local Search

	6 Discussion
	7 Conclusion
	References
	8 Appendix

