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1 Abstract

In this work, we showcase the effectiveness of motif-enhanced embeddings in disease pathway prediction on
protein-protein interaction (PPI) networks. Given an undirected PPI network with 30 different associated
diseases, we performed node classification with an array of supervised learning methods. Specifically, we
applied node2vec with logistic regression, graph convolutional networks, and GraphSAGE to the network to
classify the associated diseases for each node. By including the orbital values as well, which is the frequency
of specific motifs occurring in the graph, we show a significant improvement in classifying each node with
its associated diseases. We also show that the subsampling is just as effective as exact search for this task,
and that much of the improvement is from embeddings derived from smaller motifs.

2 Introduction

Most cellular components exert their functions through interactions within the interactome, a network that
describes physical interactions within a cell [1]. Discovered pathways are systems of interacting proteins
and molecules that, when mutated or otherwise altered in the cell, manifest themselves as distinct disease
phenotypes [2] and are encoded in the interactome. Computational discovery of disease pathway is a crucial
problem that can give insights for medical diagnosis and drug-disease treatment but their discovery is a
challenging computational task as it requires identifying all disease-associated proteins and their pathways.

Disease pathways can be characterized and discovered through disease-associated proteins in a PPI network,
which maps the interactions between the different proteins in the human body. In the network, a node is a
protein and they share an undirected edge if the proteins interact in some biochemical process. Computational
analysis can be used on known disease-related proteins to identify other proteins in a disease pathway.
Because of this, classifying disease associations of proteins in PPI networks has become an area of interest
in computational biology. Training machine learning classifiers on node embeddings of these networks via
node2vec [3], struct2vec [4], and DeepNet has been one approach. Using graph convolutional neural networks
(GCNs) directly on the graph is a novel approach that has been used sparingly.

Motif detection and discovery algorithms have been used in PPI networks to find key groups of proteins
and sets of interactions involved in particular diseases. Network motifs are subgraphs that are statistically
overrepresented relative to a random network [5]. It has been shown that PPI networks exhibit interesting
features in terms of repeated occurrences of certain modules and that these modules have biological meaning,
since they may represent evolutionary conserved topological units of cellular networks [6]. Thus, much
attention has been paid to the identification of small subgraphs, particularly those occurring significantly
often within the biological networks. In fact, work has shown that these motifs can be potentially used for
disease pathway discovery [2].

Despite the effectiveness of both approaches, there is little work combining motif data with learned embeddings
for disease pathway prediction. Detected motifs have been concatenated to neural embeddings for disease
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classification with logistic regression [2]. But there has not been a comprehensive exploration of incorporating
detected motifs into various classifiers. We investigate this topic to attempt to answer the following questions:

• How effective can graph neural networks be in disease pathway prediction? Learning has
only been done on node embeddings in this task, so extending this task to methods such as Graph
Convolutional Networks and GraphSAGE would be novel.

• Can these network motifs be correlated with diseases to improve classification algorithms?
This will be tested by training classifiers on embeddings with and without the motif data.

3 Related Work

Menche et al. [7] presents a network-based framework to identify the position of disease modules (a connected
subgraph formed by disease-related proteins) in the interactome and predict the relationship between pairs
of disease by looking at overlap of disease modules. The authors show that disease modules can only be
uncovered for diseases whose number of associated genes exceeds a critical threshold determined by the
network incompleteness. They claim that diseases sharing pathobiological similarity tend to be clustered
in the same neighborhood of the interactome. If two disease modules overlap, local perturbations causing
one disease can disrupt pathways of the other disease modules as well, resulting in shared clinical and
pathobiological characteristics.

Agrawal et al. [2] focus on discovering disease pathways in PPI network. They proposed to look at higher-
order connectivity by investigating motifs and count the number of times a protein from a disease pathway
is located at a specific position in these motifs. They used the neural embeddings of these features fed into a
logistic regression classifier to predict the disease related proteins from the PPI network. They also showed
promising results by feeding the motifs as well to the logistic regression classifier, improving its performance
by 11%. This is one of the only works to do this in disease pathway prediction, and it is the main paper we
will be extending.

Bajaj et. al is another relevant work that extends Agrawal by using GCN instead of logistic regression
with pretrained node2vec embeddings for disease classification [8]. GCN provides a semi-supervised learning
framework based on node embeddings which is an efficient variant of convolutional neural networks to operate
directly on graphs [9], which was ideal where only a few proteins have diseases associated with them. They
also employed GraphSAGE, which generates its own embeddings by by sampling and aggregating features
from a node’s local neighborhood. As a general inductive framework, it is useful for leveraging node feature
information to efficiently generate node embeddings for previously unseen data. [10] They do not incorporate
motif information in this work, however, so we extend what they have accomplished with infusing detected
motifs into embedding information.

Motif discovery has been explored extensively in application to biological networks, as the biology of a living
cell involves many intricate networks of interdependent events and interactions among molecules such as
transcriptional or gene regulation networks, PPI networks, metabolic pathways, neural networks, etc [5].
As motifs gained interest, multiple algorithms arose with differing approaches. There are network-centric
algorithms that enumerate all subgraphs with that occur in the target network, and there are motif-centric
algorithms that first enumerate all subraphs of a certain size. There are also exact search strategies and
sampling strategies that approximate to find larger motifs. Ciriello and Guerrera did a review of motif
discovery and detection algorithms specifically on PPI networks, and found that network-centric approaches
were more effective [6]. However, they did not comment on whether the tradeoff for sampling is worth it.
We plan on exploring this by using exact search and subsampling for FANMOD, a network-centric algorithm.
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4 Experimental Setup

4.1 Dataset

The PPI network from Menche et al. was culled from 15 databases and contains physical interactions
experimentally documented in humans [7]. The network is unweighted and undirected with 21,557 proteins
and 342,353 experimentally validated physical interactions. A protein-disease association occurs when the
alteration of a protein to a disease. This is the PPI networks we used. As for the protein-disease associations,
we used DisGeNET, a platform that centralized the knowledge on Mendelian and complex diseases [11].
We examined over 21,000 protein disease associations, which are split among the 519 diseases (which are
simplified to 30 categories) that each has at least 10 associated disease proteins. The figures below show
that a few diseases are more prevalent than others but most of the proteins have no diseases associated with
them, and a small few have multiple associations.

Figure 1: Distribution of Disease Frequency and Classes

4.2 Supervised Learning Methods

All of the methods were trained on 20% of the data, with 40% of the data being used for validation, and
the remaining 40% for testing. Stratified splits were used to ensure equivalent class distributions between
the split datasets. The metrics used to evaluate these classifiers were accuracy and F1-micro. Accuracy
was not sufficient on its own as 75% of the nodes had no disease association at all, so a classifier can do
this well by simply predicting the dominant class. We use F1-scoring, which is the average of precision and
recall, to evaluate the predictive power of our classifiers more fairly. F1-micro is the average of the F1-scores
across all of the classes, which gives equal weight to each possible label. This was chosen as certain disease
categories are more frequent than others, such as cancer, and our evaluation did not want to be similarly
biased towards a more dominant class. Accuracy, F1-micro, average precision, and average recall scores for
the classifiers are all shared in the Results section.

GCN and GraphSAGE are both neural networks, and similar training mechanisms were applied to both
classifiers, as after hyperparameter tuning it was found that different optimizations for each did not have
a significant effect on downstream classification accuracy. The outputs of the classifiers are both fed to a
dense layer of size 30 with a softmax activation to predict the disease classes. The cross entropy loss function
was optimized with Adam, an adaptive learning rate optimizer that combines stochastic gradient descent
with momentum and gradient scaling. The initial learning rate was 0.005. This network was trained for
200 epochs with early stopping for when the validation and training losses converge. To prevent overfitting,
dropout of 0.5 is applied to the layers.
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4.2.1 Node2Vec Embedding with Logistic Regression

Each node in the full network was embedded into a 128 length vector, which was generated through 10 random
walks of path length 100 through the network for each node. These were then modeled with windows of
various sizes separately, as well as with varying probabilities for returning to and moving away from source
node for a random walk. Tuning these hyperparameters had little effect downstream, so we settled on using
a window size of 5, and equal probabilities of 0.5 for a random walk to return to a source node and moving
away from a source node. A logistic regression classifier was then applied to this generated embedding, which
had the task of classifying each node in the embedding with the 30 diseases. Since a protein could have 0 to
multiple diseases associated with it, this was a multilabel classification problem, which logistic regression is
not specifically built for. The task was binarized, so for each of the 30 labels, a logistic regression classifier
trained on the embedding made a binary prediction for each association. The final accuracy scores are a
culmination of this ensemble of predictions.

4.2.2 Graph Convolutional Network

A graph convolutional layer is similar to a layer found in a neural network, but also contains the normalized
adjacency matrix of the graph, as well as the node features. This encodes the structure and features of the
graph into the trainable layers. After testing multiple hyperparameters, the network presented here consists
of two layers of size 32, with a ReLU activation in between the layers. It is trained with the configuration
mentioned above.

4.2.3 GraphSAGE

GraphSAGE does not use the graph directly like GCN, as it generates its own embeddings by sampling and
aggregating features from a node’s local neighborhood. Like GCN, GraphSAGE architecture here is also a
two layer structure of size 32. For the first layer, neighborhoods of size 100 are sampled for each node, and
for the second, neighborhoods of size 50 are used. The generated embeddings from here are trained in a
neural network architecture in the configuration described earlier in this section.

4.3 Motif Discovery and Detection

In order to better combine graph embedding and motifs detection. We looked at graphlet orbital positions
[12]. Graphlets are small connected non-isomorphic subgraphs of a large network. Since our PPI network is
undirected, graphlet is well defined for characterizing the network. We can accomplish this by generalizing
degree distribution into distributions measuring the number of ’nodes’ in graphlets. For subgraph of size 2
to 5 nodes, the node can be classified into 73 position of graphlets shown in Figure 2.

Figure 2: 73 possible motifs ranging from size 2 to 5
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We implemented FANMOD, which employs Rand-ESU, an exact search algorithm that uses pattern growth
trees to find maximal and unique subgraphs using partitioned pattern growth trees, which while effective at
finding motifs, can also return redundant isomorphic candidates. It has random sampling such that each leaf
is visited with equal probability without traversing the entire tree [6]. We followed the graphlet orbital types
in the PPI network. We did not focus on 2 node graphlets as they are trivial as any edge can be described as
such. We successfully extracted positions for size 3 motifs using the exact search and subsampling to compare
its effectiveness. For size 4 motifs on our network, we solely used subsampling due to the computational
infeasibility to run exact search on our large network. For this same reason we were unable to find 5 node
graphlets through exact search or a sufficient subsampling. However, Agrawal et. al. provided the orbital
positions up to 5-node graphlets for the same dataset, so we used those orbital positions. The subsampling
technique we used was graphlet orbital estimation by random sample of vertices with cutting probabilities
of 0.5 for each level of the search tree. The motif features is therefore the number of orbital positions that
a protein is in the PPI network.

5 Results

From the accuracy score we can see that Node2Vec is not a good classifier with the additional motif
information, which does not align with the previous results. Even using the provided motifs from previous
research, we were not able to generate embeddings or train logistic regression to acheive the purported 11%
increase in accuracy [2]. In fact from our experiments we found that embeddings generated from sampling
nearby nodes, whether it is through a random walk in Node2Vec or neighborhood sampling in GraphSAGE,
were not effective at discriminating disease classes.

While accuracy scores give us some sense of the effectiveness of the classifiers compared to each other but
they do not tell the full story. When looking at the F1-micro scores we can see that motif information did
improve GCN significantly in comparison to the baseline. Using all motifs up to size 5 caused the most
improvement, but the difference between all the motif-enhanced GCN results are within 1.5% of each other.
This shows that subsampling is just as effective as the exact search, as it still imparts useful information
about the distribution of the graphlets for different pathologies. It also shows that there are diminishing
returns on examining higher order connectivities, as including size 5-motifs does not significantly improve
the F1-micro or accuracy scores compared to size 3-motifs.

Node2vec GCN GraphSAGE

Accuracy F1 score Accuracy F1 score Accuracy F1 score

baseline 0.7569 0.04830 0.7562 0.1500 0.7641 0.0676
3-motifs exact 0.0068 0.0163 0.7551 0.5277 0.7583 0.0715

3-motifs subsampled 0.0731 0.0292 0.7530 0.5224 0.7563 0.0799
4-motifs subsampled 0.0336 0.0288 0.7599 0.5192 0.7602 0.0593

5-motifs from Agrawal 0.0011 0.0194 0.7605 0.5348 0.7464 0.0842

Table 1: Accuracy and F1-micro scores of Methods with and without Motifs. Bold indicates best score across
different motif embeddings

The ineffectiveness of logistic regression makes sense when we visualize the node2vec embeddings and
the associated diseases for each node. Below is a t-SNE visualization of the embeddings reduced to two
dimensions, with the colors representing the fact that a protein is associated with a disease. While 75% of
the nodes have no relation to any disease in the corpus, there is no separable distinction in the embedding,
which will make it difficult for any algorithm to learn which proteins and nodes are associated with particular
diseases. This also explains why GraphSAGE had similar issues. The random walks for Node2Vec are likely
to contain nodes in similar neighborhoods that were sampled. Even a more powerful model like a 2 layer
neural network will still struggle to find meaningful separation in a similar embedding. This would have to
be experimentally verified by attempting to train larger and more complex GraphSAGE models in future
work.
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Figure 3: t-SNE visualization of node2vec embeddings

Average precision and recall over the disease classes, presented in the table below, reinforce earlier findings
as well. Logistic regression on the Node2Vec embeddings has high recall and low precision, because the
classifier trivially predicts that all proteins have no disease associations. Both GCN and GraphSAGE did
not do this, as they have more balanced precision and recall scores. GCN however was much more effective
at identifying diseases, as their average precision and recall scores were almost an order of magnitude more
accurate than GraphSAGE.

Node2vec GCN GraphSage

Precision Recall Precision Recall Precision Recall

baseline 0.0061 0.5131 0.1400 0.1900 0.0649 0.0715
3-motifs exact 0.0085 0.6615 0.5105 0.5462 0.0742 0.0700

‘ 3-motifs subsampled 0.0153 0.8884 0.5088 0.5368 0.085 0.0765
4 motifs subsampled 0.0151 0.8262 0.4995 0.5406 0.0626 0.0571

5-motifs from Agrawal 0.0142 0.4442 0.5152 0.556 0.0856 0.084

Table 2: Average Precision and Recall

6 Conclusion

We have shown the effectiveness of motif-enhanced embeddings in disease pathway prediction on protein-
protein interaction (PPI) networks. Given an undirected PPI network with 30 different associated diseases,
we performed node classification with an array of supervised learning methods. Specifically, we applied
node2vec with logistic regression, graph convolutional networks, and GraphSAGE to the network to classify
the associated diseases for each node. While we were not able to generate successful results with embedding
based approaches like Node2Vec and GraphSAGE, we did show the promise of motif enhancement with
GCNs. We found a significant improvement in classifying each node with its associated diseases. With
GCN results, we also show that the subsampling is just as effective as exact search for capturing the motif
distribution information necessary for this task, and that much of the improvement is from embeddings
derived from smaller motifs. There are many future directions for this work. We can try to improve the
embedding based approaches to acheive more comparable results with existing literature, explore other motif
discovery algorithms, and extend this methodology to other tasks that employ GCNs.
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Uncovering disease-disease relationships through the incomplete interactome. Science, 347, 2015.

[8] Payal Bajaj, Suraj Heereguppe, and Chiraag Sumanth. Graph convolutional networks to explore drug
and disease relationships in biological networks.

[9] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pages 1024–1034, 2017.

[11] Sagar Maheshwari Marinka Zitnik, Rok Sosič and Jure Leskovec. BioSNAP Datasets: Stanford
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